Exercise 49

If f and g are the functions whose graphs are shown, let $u(x)=f(x) g(x)$ and $v(x)=f(x) / g(x)$.
(a) Find $u^{\prime}(1)$.
(b) Find $v^{\prime}(5)$.

Solution

Evaluate the derivative of $u(x)$ using the product rule.

$$
u^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

Evaluate the derivative of $v(x)$ using the quotient rule.

$$
v^{\prime}(x)=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}
$$

At $x=1$, the slope of f is 2 and the slope of g is $-1: f^{\prime}(1)=2$ and $g^{\prime}(1)=-1$. Use this information to evaluate $u^{\prime}(1)$.

$$
u^{\prime}(1)=f^{\prime}(1) g(1)+f(1) g^{\prime}(1)=(2)(1)+(2)(-1)=0
$$

At $x=5$, the slope of f is $-1 / 3$ and the slope of g is $2 / 3: f^{\prime}(5)=-1 / 3$ and $g^{\prime}(5)=2 / 3$. Use this information to evaluate $v^{\prime}(5)$.

$$
v^{\prime}(5)=\frac{f^{\prime}(5) g(5)-g^{\prime}(5) f(5)}{[g(5)]^{2}}=\frac{\left(-\frac{1}{3}\right)(2)-\left(\frac{2}{3}\right)(3)}{2^{2}}=-\frac{2}{3}
$$

